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Proposal for a Boundary-Integral Method
without Using Green’s Function

NAOTO KISHI, MEMBER, IEEE, AND TAKANORI OKOSHI, FELLOW, IEEE

,Ostracf —A new method for solving electromagnetic boundary-value

problems is presented. The new method is a modification of the conven-

tional boundary-element metho~ the converstionaf method is modMied by

using the reciprocity theorem derived from Green’s identity, making the

use of Green’s function unnecessary. To confirm the validity of the ,uew

method, numerical analyses are presented for Dirichfet- and Neumann-type

boundary-value problems of a two-dimensional seafar wave equation.

I. INTRODUCTION

v ARIOUS NUMERICAL methods are now available

for the analysis of electromagnetic boundary-value

problems [1]. In particular, since the early 1970’s, integral-

equation methods [2]–[7] have become popular because of

the relatively short computer time required. In the past 15

years, of the integral-equation methods, the so-called

boundary-element method (sometimes called the counter-

integral method) has been used frequently to solve electro-

magnetic boundary-value problems [3]–[7].

In the boundary-element method, the boundary-integral

equation is obtained first from Green’s identity by using

Green’s function and is then solved by a discretization

procedure similar to the finite-element method. As the

Green’s function for a two-dimensional scalar wave equa-

tion, various zero-order Bessel or Hankel functions, or

their combinations, have been used [3], [4], [6], [7].

However, to formulate the boundary-integral equation,

Green’s function is not always necessary. The use of

Green’s function is sometimes even harmful because the

integral equation will have a singular point when Green’s

function is used; the singular point makes the numerical

analysis more complicated.

In this paper, we present a new boundary-integral

method without using Green’s function. In the new method,

a homogeneous solution of the wave equation is used

instead of Green’s function, as has been done in [2] to

solve scattering problems. We apply this method to solve

Dirichlet- and Neumann-type boundary-value problems of

a two-dimensional scalar wave equation. The moment

method [10] is used in the computation.
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II. FORMULATION OF INTEGRAL EQUATION

A. Basic Equations

Consider a two-dimensional region S surrounded by a

contour r as shown in Fig. 1. If we denote by @ a scalar

wave function defined in region S, @satisfies the following

wave equation:

V;~+k2$=0 (1)

where Vt2 denotes a two-dimensional Laplacian operator,

and k the eigenvalue or the wavenumber of the eigenfunc-

tion ~.

The boundary condition is given generally as

p$s+qg=o (2)

where p and q are real constants. In (2), the case p # O,

q = O and the case p = O, q # O represent Dirichlet- and

Neumann-type boundary conditions, respectively. The op-

erator ( i3/d n ) denotes the derivat we in the outward nor-

mal direction on 17.

B. Conventional Boundary-Elemen~ Method (BEM

Formulation)

In conventional BEM analyses [3]–[7], the wave equa-

tion (1) is first converted to a boundary-integral equation

by using the two-dimensional Green’s theorem (see [3] for

the derivation) as

(3)

where @(r’) denotes the wav ~ function at r’ upon the

contour (see Fig. 1). Functi@, G is the two-dimensional

Green’s function in free space, which satisfies

v~G+k2G= –~(r–r’) ‘ (4)

where 8 denotes a Dirac’s delta function.

In [3], [4], [6], and [7], Green’s function has been chosen

as

{

jH~2) ( kR )/4 (in [3], [6])

G(R) = coJo(kK)– To(klt)/4 (in [4])

– YO(kR)/4 (in [7])

(5)

0018-9480/87/1000-0887$01.00 01987 IEEE



888 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 10, OCTOBER 1987

r

o

Q(r’)

s

p(r)

Fig. 1. A two-dimensional region s surrounded by a contour r.

where

and

H~2J( kR)

JO(kR)

YO(kR)

co

R=lr–r’l

zero-order Hankel function of the second

kind,

zero-order Bessel function of the first kind,

zero-order Bessel function of the second kind,

complex constant.

In the conventional BEM, (3) is solved to obtain the

solution for(l) and(2).

C. Formulation without Green’s Function

We note that (3) is a boundary-integral equation; that is,

it is an equation in terms of the @values and their normal

derivatives only on the boundary I’. Our present concern is

whether it is possible to use a homogeneous solution of (4),

in other words a solution of (l), instead of G, which is the

inhomogeneous solution of (4). Hereafter, we denote the

homogeneous solution by + and call it the weight function.

If we substitute the wave function @ and the weight

function t) into the two-dimensional Green’s theorem:

we obtain, instead of (3), the following scalar reciprocal

theorem [8], [9]:

(7)

because both @ and ~ are solutions of (l).

We can solve (7) instead of (3) to obtain the solution for

(1) and (2). This is the principle of the proposed method.

III. FORMULATION FOR BOUNDARY-ELEMENT
ANALYSIS

A. Discretization of the Boundary

We apply discretization similar to that in conventional

BEM analysis in solving the integral equation (7). We

assume first that the region S has an elliptical or rectangu-

lar shape, with symmetries with respect to the x and y

axes, and that the eigenfunction ~ also has such symme-

tries. Thus, we need to consider only the first quadrant.

The boundary r is then approximated by N straight-line

segments, which are called elements in the BEM analysis
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Fig. 2. Polygonal approximation of the boundary, (a) Type-1 approxi
mation. (b) Type-2 approximation.

(see Fig. 2(a)). The function @ and its derivative ( d@/iln)

are now defined upon the node points P, between the two

elements I’, _ ~ and r, shown in Fig. 2(a).

Another method for approximating the boundary is

shown in Fig. 2(b). In this method, a segment 1’1consists

of two line elements. Therefore, the shape of the ap-

proximated boundary looks apparently the same as in Fig.

2(a) except that the number of elements N is doubled.

Note, however, that in this second method the value of +

is defined only on old node points P,, and not on the new

inflection points P,, + ~. In the following, we call the two

discretization methods (Fig. 2(a) and (b)) type 1 and type

2, respectively.

In both of type-1 and type-2 approximations, the value

of function @ along element 1’1 is obtained by linear

interpolation between values at node points Pi and Pi+ ~ as

L–t
+= yol+;%+l (8)

where L denotes the length of element r, in type 1 and the

sum of the length of two line elements PiPil + ~ and Pii + ~Pi+ ~

in type 2, and t denotes a variable expressing the distance

from the node point P, along r,. The normal derivative
( d@/d n ) is also linearly interpolated in a manner similar

to that in (8).

B. Weight Function

We choose the weight function + as circular harmonics,

i.e., the product of a Bessel function of the first kind and a

trigonometric function

~=+(kr)cos(jd+p) (9)

where the order j and the phase p of the trigonometric

part are chosen as shown in Table I so as to match the

symmetry condition of the eigenfunction @to be obtained.
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TABLE I
SELECTION OF THE ORDER j AND PHASE p OF THE WEIGHT

FUNCTION $ ACCORDING TO THE SYMMETRY OF THE

EIGENFUNCTION $

summeti-y about z or y-azis
I

!P=Jj(kr)CxJs( .7’0 l-p)

I x-axis

E antiswmetric I ~~~lol
.wmrnetric odd 7r/2

antis vmmetric even 7r/2

Thus, we can” restrict the contour integral of (7) to the first

quadrant, because the integrals along the x and y axes

vanish owing to the symmetry of @ and its normal deriva-

tive.

C. Matrix Equation and Its Solutions

Using the above discretization and weight function, we

now solve (7) by using the method of moments. We need

N + 1 linearly independent weight functions I), because the

number of unknown values of @ is N + 1 (see Fig. 2(a)l

These N + 1 ~ functions can

0,1,. . . , N in (9). Using these,

be obtained by lett~g ~‘=

(7) is now rewritten as

or, in matrix form,

[A]

\ @’N

=[B]

(%po

dn

6’+N

an

(11)

where [A] and [B] are square matrices of order (N+ 1),

Either the value of@ or its normal derivative ( d@/dn) is

zero on the boundary in Dirichlet- and Neumann-type

problems, respectively. Therefore, either the left-hand side

or the right-hand side of (11) vanishes, and the eigenvalue

equation is reduced to

det[B]=O for a Dirichlet-boundary condition (12)

det[A]=O for a Neumann-boundary condition.

(13)

These equations are the equations to be solved.

Generally, however, (11) relates the values of a function

and its normal derivative ( d@/d n ) on the boundary. Equa-

tion (11) can be applied, therefore, not only to Dirichlet-

and Neumann-type boundary-value problems but also to

general electromagnetic boundary-value problems in com-

posite media (such as dielectric waveguides) or with com-

posite boundary conditions.
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Fig. 3. Convergence characteristics for elli~tical boundaries. (a) TM
mode.(b) TE mode:

IV. NUMERICAL RESULTS

Some numerical solutions based upon (11)-(13) are

shown in Figs. 3–7. In these figures, eigenmodes for the

Dirichlet- and Neumann-type boundary conditions are

called the TM and TE modes, respectively. This is because

the obtained eigenfunctions @ give the electromagnetic

field components in the direction of propagation of the

TM and TE modes propagated in a metallic waveguide.

The mode numbers (subscripts) are given according to

those in a circular or rectangular metallic waveguide. The

superscripts e and o denote, respectively, the even and odd

modes with respect to the x axis, respectively.

Figs. 3 and 4 show how the calculated wavenumber kb

converges as the number of elements N increases.

Fig. 3(a) and (b) shows the convergence for the elliptical

boundary for the TM and TE modes, -respectively. Here,

TYPE 1 and TYPE 2 indicate the two methods for ap-

proximating the shape of boundary described in Section

III-A.
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Fig. 4. Convergence characteristics for rectangular boundaries. (a) TM
mode. (b) TE mode.

When the aspect ratio a/b is unity (upper trace in Fig.

3(a) and (b)), i.e., with a circular boundary, the eigenvalues

are found to converge to their analytical solutions, which

are the first zeros of the Bessel functions of the first kind

and their derivatives. Comparing the two types of ap-

proximations of boundary (types 1 and 2), we find that the

convergence is better in type 2 than in type 1. It is also
found that an eigenvalue obtained with the type-2 ap-

proximation at certain N is almost equal to that with type

1 but at twice N. This means that the shape of the

boundary is more important than the node number in

achieving high accuracy.

Fig. 4(a) and (b) shows the convergence for the rectan-

gular boundary. Eigenvalues converge to analytical solu-

77tions, which are 7r/2 (b/a) + 4 and 7r/2 (b/a) + 1 for

the TM12 and TEII modes, respectively. An accuracy of

the order of magnitude of 10-10 is obtained at N =10

independent of the aspect ratio a/b.
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Fig. 5. Eigenvalues for elliptical boundaries as a function of the aspect
ratio a/b. (a) TM mode. (b) TE mode.

The solid curve in Fig. 5(a) and (b) shows the eigenvalue

for the elliptical boundary as a function of the aspect ratio

a/b. The results of the variational method analyses using

polynomials of x and y as trial functions [11] are also

shown for comparison (dots). The solid curve and the dots

show good agreement.

Fig. 6 shows the difference between the eigenvalues

obtained with the proposed method and the conventional

BEM analyses using the integral equation (eq. (3)), both

using the same number of segments N. The boundary

shape is assumed as a circle and eigenmodes are TE

modes. The difference is found for practical purposes to be

sufficiently small and to be almost independent of the

number of elements N. This means that the convergence

characteristics of the proposed method are almost identical

with those of the conventional BEM analysis.
Fig. 7(a) and (b) shows the values of @ or ( d@/c?n) at

nodes points upon the boundary calculated by using (11)
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for circular and rectangular boundary shapes, respectively.

The analytical solutions are also shown as solid and dotted

curves. The boundary values calculated with this method

show good agreement with exact ones.

V. DISCUSSION

1) In this paper we have presented a new boundary-

integral formulation without using Green’s function and

have applied it to boundary-element analyses of Dirichlet-

and Neumann-type boundary-value problems. From the
foregoing numerical results, it is found that this method is

valid and useful for solving these problems.
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Fig. 8. I Difference of the approximation of boundary between type 1

and type 2. Number of node points is that of type 2.

2) The numerical computation results shown in Figs. 3

and 4 suggest that this method can be applied to various

boundary shapes with fairly rapid convergence. Compari-

sons with variational method and conventional BEM

analyses, shown in Figs. 5 and 6, indicate that this method

compares favorably with other numerical method. “The

result shown in Fig. 7 indicates that this method is also

useful for calculating the value of the wave function on the

boundary.

3) In connection with Fig. 3, it was stated that the

eigenvalue obtained with the type-2 approximation at cer-

tain” N is almost equal to that obtained with type-1, but at

twice N. Fig. 8 shows the difference between these two

eigenvalues as a function of N for the type-2 approxima-

tion. The difference is very small; therefore, we can em-

phasize the effectiveness of the type-2 approach, in which

the approximation of the boundary shape, is improved,

whereas the number of node points, and hence the number

of unknown variables, are kept unchanged.

4) The above statement is also supported by the fact

that the convergence of the eigenvalue for the rectangular

boundary (Fig. 4) is more rapid than that for the elliptical

boundary (Fig. 3). We understand that this is because the

approximation of the boundary shape is not necessary in

the rectangular case.

5) The features of the proposed method can be sum-

marized in comparison with the conventional BEM and

other numerical methods as follows:

i)

ii)

iii)

iv)

Formulation of the problem is simple and easy

because Green’s function is not used; hence the

singular point is absent.

Consideration of the modal symmetry can be done

easily by proper choice of the weight function +.

The numerical accuracy can be improved by simply

improving the approximation of the boundary

shape.

It does not contain any spurious solutions in the

numerical analysis in this paper.
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The proposed

without Green’s

VI. CONCLUSIONS

method, the boundary-integral method

[unction, is found to be an efficient tool

for solving the boundary-value problems of two-dimen-

sional scalar wave equations.
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