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Proposal for a Boundary-Integral Method
without Using Green’s Function

NAOTO KISHI, MEMBER, IEEE, AND TAKANORI OKOSHI, FELLOW, IEEE

Abstract —A new method for solving electromagnetic boundary-value
problems is presented. The new method is a modification of the conven-
tional boundary-element method; the conventional method is modified by
using the reciprocity theorem derived from Green’s identity, making the
use of Green’s function unnecessary. To confirm the validity of the new
method, numerical analyses are presented for Dirichlet- and Neumann-type
boundary-value problems of a two-dimensional scalar wave equation.

I. INTRODUCTION

ARIOUS NUMERICAL methods are now available

for the analysis of electromagnetic boundary-value
problems [1]. In particular, since the early 1970’s, integral-
equation methods [2]-[7] have become popular because of
the relatively short computer time required. In the past 15
years, of the integral-equation methods, the so-called
boundary-element method (sometimes called the counter-
integral method) has been used frequently to solve electro-
magnetic boundary-value problems [3]-{7].

In the boundary-element method, the boundary-integral
equation is obtained first from Green’s identity by using
Green’s function and is then solved by a discretization
procedure similar to the finite-element method. As the
Green’s function for a two-dimensional scalar wave equa-
tion, various zero-order Bessel or Hankel functions, or
their combinations, have been used [3], [4], [6], [7].

However, to formulate the boundary-integral equation,
Green’s function is not always necessary. The use of
Green’s function is sometimes even harmful because the
integral equation will have a singular point when Green’s
function is used; the singular point makes the numerical
analysis more complicated. ‘

In this paper, we present a new boundary-integral
method without using Green’s function. In the new method,
a homogeneous solution of the wave equation is used
instead of Green’s function, as has been done in [2] to
solve scattering problems. We apply this method to solve
Dirichlet- and Neumann-type boundary-value problems of
a two-dimensional scalar wave equation. The moment
method [10] is used in the computation.
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II. FORMULATION OF INTEGRAL EQUATION
A. Basic Equations

Consider a two-dimensional region S surrounded by a
contour I' as shown in Fig. 1. If we denote by ¢ a scalar
wave function defined in region S, ¢ satisfies the following
wave equation: :

Vip+kip=0 (1)

where v} denotes a two-dimensional Laplacian operator,
and k the eigenvalue or the wavenumber of the eigenfunc-
tion ¢. \
The boundary condition is given generally as
ad
pot g =0 ()
n

where p and ¢ are real constants. In (2), the case p # 0,
g =0 and the case p=0, g # 0 represent Dirichlet- and
Neumann-type boundary conditions, respectively. The op-
erator (d/dn) denotes the derivaiive in the outward nor-
mal direction on T'.

B. Conventional Boundary-Element Method (BEM
Formulation)

In conventional BEM analyses [3]-[7], the wave equa-
tion (1) is first converted to a boundary-integral equation
by using the two-dimensional Green’s theorem (see [3] for
the derivation) as

&(r) =2¥§(G%—¢§§) a Q)

where ¢(r") denotes the wav- function at r upon the
contour (see Fig. 1). Functio: G is the two-dimensional
Green’s function in free space, which satisfies

ViIG+ kG = —-8(r—v) " (4)

where 8 denotes a Dirac’s delta function.
In [3], {4}, [6], and [7], Green’s function has been chosen
as

JH (kR) /4 (in [3], [6])
G(R)={ CoJo(kR)~Y,(kR)/4 (in [4])
~Yo(kR)/4 (in [7])

)
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Fig. 1. A two-dimensional region S surrounded by a contour T'.
where
R=r-r]|
and
H{(kR) zero-order Hankel function of the second
kind,
Jo(kR) zero-order Bessel function of the first kind,
Y,(kR)  zero-order Bessel function of the second kind,
G, complex constant.

In the conventional BEM, (3) is solved to obtain the
solution for (1) and (2).

C. Formulation without Green’s Function

We note that (3) is a boundary-integral equation; that is,
it is an equation in terms of the ¢ values and their normal
derivatives only on the boundary T'. Our present concern is
whether it is possible to use a homogeneous solution of (4),
in other words a solution of (1), instead of G, which is the
inhomogeneous solution of (4). Hereafter, we denote the
homogeneous solution by ¥ and call it the weight function.

If we substitute the wave function ¢ and the weight
function ¢ into the two-dimensional Green’s theorem:

‘”) a6

an
we obtain, instead of (3), the following scalar reciprocal
theorem [8], [9]:

9%
_ 2 = _
[(4wio—sviy)ds f(%n ¢

gﬁ(xpj—jw?)dho ()

n
because both ¢ and ¢ are solutions of (1).

We can solve (7) instead of (3) to obtain the solution for
(1) and (2). This is the principle of the proposed method.

II1. FORMULATION FOR BOUNDARY-ELEMENT

ANALYSIS
A. Discretization of the Boundary

We apply discretization similar to that in conventional
BEM analysis in solving the integral equation (7). We
assume first that the region S has an elliptical or rectangu-
lar shape, with symmetries with respect to the x and y
axes, and that the cigenfunction ¢ also has such symme-
tries. Thus, we need to consider only the first quadrant.

The boundary T is then approximated by N straight-line
segments, which are called elements in the BEM analysis
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Fig. 2. Polygonal approximation of the boundary. (a) Type-1 approxi-
mation. (b) Type-2 approximation.

(see Fig. 2(a)). The function ¢ and its derivative (d¢/dn)
are now defined upon the node points P, between the two
elements I',_, and I, shown in Fig. 2(a).

Another method for approximating the boundary is
shown in Fig. 2(b). In this method, a segment I, consists
of two line elements. Therefore, the shape of the ap-
proximated boundary looks apparently the same as in Fig,
2(a) except that the number of elements N is doubled.
Note, however, that in this second method the value of ¢
is defined only on old node points P, and not on the new
inflection points P, ;. In the following, we call the two
discretization methods (Fig. 2(a) and (b)) type 1 and type
2, respectively.

In both of type-1 and type-2 approximations, the value
of function ¢ along element I, is obtained by linear

1

interpolation between values at node points P, and P, as
L—1 t
(8)

RANAL
where L denotes the length of element T, in type 1 and the
sum of the length of two line elements PP, ,, and P, P, ,
in type 2, and ¢ denotes a variable expressing the distance
from the node point P, along I. The normal derivative
(3¢ /dn) is also linearly interpolated in a manner similar
to that in (8).

¢ =

B. Weight Function

We choose the weight function ¢ as circular harmonics,
i.e., the product of a Bessel function of the first kind and a
trigonometric function

Y =J,(kr)cos(j +p) (9)

where the order j and the phase p of the trigonometric
part are chosen as shown in Table I so as to match the
symmetry condition of the eigenfunction ¢ to be obtained.



KISHI AND OKOSHI: BOUNDARY-INTEGRAL METHOD WITHOUT GREEN’S FUNCTION

TABLE 1
SELECTION OF THE ORDER j AND PHASE p OF THE WEIGHT
FUNCTION yy ACCORDING TO THE SYMMETRY OF THE
EIGENFUNCTION ¢

symmeltry about x or y-axis

V=J,(kr)eos(j0rp)

x-axis y-axis J P
symmetric symmetric even 0
symmetric antisymmetric odd 0

antisymmetric symmetric odd /2
antisymmetric | antisymmetric even /2

Thus, we can restrict the contour integral of (7) to the first
quadrant, because the integrals along the x and y axes
vanish owing to the symmetry of ¢ and its normal deriva-
tive.

C. Matrix Equation and Its Solutions

Using the above discretization and weight function, we
now solve (7) by using the method of moments. We need
N +1 linearly independent weight functions ¢, because the
number of unknown values of ¢ is N +1 (see Fig. 2(a)).
These N +1 ¢ functions can be obtained by letting j=
0,1,--+, N in (9). Using these, (7) is now rewritten as

N-1 EN N-1 do
I Jo5.4= & [y5,4

or, in matrix form, as

(10)

94,
Lo an

[4] =[B] (11)
o | |0
an

where [A] and [ B] are square matrices of order (N +1).

Either the value of ¢ or its normal derivative (d¢/dn) is
zero on the boundary in Dirichlet- and Neumann-type
problems, respectively. Therefore, either the left-hand side
or the right-hand side of (11) vanishes, and the eigenvalue
equation is reduced to

det[B] =0
det[4] =0

for a Dirichlet-boundary condition (12)
for a Neumann-boundary condition.

(13)

These equations are the equations to be solved.

Generally, however, (11) relates the values of a function
and its normal derivative (8¢ /dn) on the boundary. Equa-
tion (11) can be applied, therefore, not only to Dirichlet-
and Neumann-type boundary-value problems but also to
general electromagnetic boundary-value problems in com-
posite media (such as dielectric waveguides) or with com-
posite boundary conditions.
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Fig. 3. Convergence characteristics for elliptical boundaries. (a) TM
mode. (b) TE mode.

IV. NuUMERICAL RESULTS

Some numerical solutions based upon (11)-(13) are
shown in Figs. 3-7. In these figures, eigenmodes for the
Dirichlet- and Neumann-type boundary conditions are
called the TM and TE modes, respectively. This is because
the obtained eigenfunctions ¢ give the electromagnetic
field components in the direction of propagation of the
TM and TE modes propagated in a metallic waveguide.
The mode numbers (subscripts) are given according to
those in a circular or rectangular metallic waveguide. The
superscripts e and o denote, respectively, the even and odd
modes with respect to the x axis, respectively.

Figs. 3 -and 4 show how the calculated wavenumber kb
converges as the number of elements N increases.

Fig. 3(a) and (b) shows the convergence for the elliptical

- boundary for the TM and TE modes, respectively. Here,

TYPE 1 and TYPE 2 indicate the two methods for ap-
proximating the shape of boundary described in Section
ITI-A.
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Fig. 4. Convergence characteristics for rectangular boundaries. (a) TM
mode. (b) TE mode.

When the aspect ratio a /b is unity (upper trace in Fig.
3(a) and (b)), i.e., with a circular boundary, the eigenvalues
are found to converge to their analytical solutions, which
are the first zeros of the Bessel functions of the first kind
and their derivatives. Comparing the two types of ap-
proximations of boundary (types 1 and 2), we find that the
convergence is better in type 2 than in type 1. It is also
found that an eigenvalue obtained with the type-2 ap-
proximation at certain N is almost equal to that with type
1 but at twice N. This means that the shape of the
boundary is more important than the node number in
achieving high accuracy.

Fig. 4(a) and (b) shows the convergence for the rectan-
gular boundary. Eigenvalues converge to analytical solu-
tions, which are 7/2y(b/a)*+4 and 7/2/(b/a)’+1 for
the TM,;, and TE,; modes, respectively. An accuracy of
the order of magnitude of 1071% is obtained at N =10
independent of the aspect ratio a /b.
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Fig. 5. Eigenvalues for elliptical boundaries as a function of the aspect
ratio a /b. (a) TM mode. (b) TE mode.

The solid curve in Fig. 5(a) and (b) shows the eigenvalue
for the elliptical boundary as a function of the aspect ratio
a/b. The results of the variational method analyses using
polynomials of x and y as trial functions [11] are also
shown for comparison (dots). The solid curve and the dots
show good agreement.

Fig. 6 shows the difference between the eigenvalues
obtained with the proposed method and the conventional
BEM analyses using the integral equation (eq. (3)), both
using the same number of segments N. The boundary
shape is assumed as a circle and eigenmodes are TE
modes. The difference is found for practical purposes to be
sufficiently small and to be almost independent of the
number of elements N. This means that the convergence
characteristics of the proposed method are almost identical
with those of the conventional BEM analysis.

Fig. 7(a) and (b) shows the values of ¢ or (d¢/dn) at
nodes points upon the boundary calculated by using (11)
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Fig. 7. Values of ¢ or its normal derivatives (d¢/dn) upon the node
points on the boundary. (a) ¢ of circular boundary (b) (dp/dn) of
rectangular boundary (a /b = 2).

for circular and rectangular boundary shapes, respectively.
The analytical solutions are also shown as solid and dotted
curves. The boundary values calculated with this method
show good agreement with exact ones.

V. . DISCUSSION

1) In this paper we have presented a new boundary-
integral formulation without using Green’s function and
have applied it to boundary-element analyses of Dirichlet-
and Neumann-type boundary-value problems. From the
foregoing numerical results, it is found that this method is
valid and useful for solving these problems. '
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Fig. 8. Difference of the approximation of boundary between type 1
and type 2. Number of node points is that of type 2.

2) The numerical computation results shown in Figs. 3
and 4 suggest that this method can be applied to various
boundary shapes with fairly rapid convergence. Compari-
sons with variational method and conventional BEM
analyses, shown in Figs. 5 and 6, indicate that this method
compares favorably with other numerical method. The
result shown in Fig. 7 indicates that this method is also
useful for calculating the value of the wave function on the
boundary.

3) In connection with Fig. 3, it was stated that the
eigenvalue obtained with the type-2 approximation at cer-
tain N is almost equal to that obtained with type-1, but at
twice N. Fig. 8 shows the difference between these two
eigenvalues as a function of N for the type-2 approxima-
tion. The difference is very small; therefore, we can em-.
phasize the effectiveness of the type-2 approach, in which
the approximation of the boundary shape is improved,
whereas the number of node points, and hence the number
of unknown variables, are kept unchanged.

4) The above statement is also supported by the fact
that the convergence of the eigenvalue for the rectangular
boundary (Fig. 4) is more rapid than that for the elliptical
boundary (Fig. 3). We understand that-this is because the
approximation of the boundary shape is not necessary in
the rectangular case.

5) The features of the proposed method can be sum-
marized in comparison with the conventional BEM and
other numerical methods as follows:

i) Formulation of the problem is simple and easy
because Green’s function is not used; hence the
singular point is absent.

ii) Consideration of the modal symmetry can be done

easily by proper choice of the weight function .

The numerical accuracy can be improved by simply

improving the approximation of the boundary

shape.

iv) It does not contain any spurious solutlons in the
numerical analysis in this paper.
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VI." 'CONCLUSIONS

The proposed method, the boundary-integral method
without Green’s function, is found to be an efficient tool
for solving the boundary-value problems of two-dimen-
sional scalar wave equations.
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